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function, Bathtub and upside down bathtub mean residual life, Modeling, Discrete

life (failure) data, Maximizing reliability.

Abstract - A useful function for analyzing burn-in, developing maintenance

policies, or simply modeling lifetimes of equipment is the mean residual life

function. Other functions, such as the reliability or the failure rate

functions, are of course important also. Discrete data arises naturally in

various ways: from discretizing or grouping continuous data, devices operate by

"cycles" (e.g., a copier's "cycle" is a copy, its "lifelength" the total number

of copies), etc. This paper develops a general approach to modeling discrete

bathtub and upside down bathtub mean residual life functions. Because the

approach allows parametric modeling of the mean residual life, maximum

likelihood estimation of models can be done. This will enable estimation of

such parametric models for complete discrete data, as well as right censored

discrete data. A simple, perhaps surprising, example is presented where the

mean residual life increases, then decreases; however, the hazard rate also

increases, drops suddenly at one cycle, then increases again. We discuss two

reasonable industrial explanations of such unusual behavior.
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1. INTRODUCTION

Modeling of the aging process of components and equipment can be performed

in various ways. One helpful tool for that modeling, as well as for analyzing

burn-in or developing maintenance policies, is the mean residual life function.

Of course, other functions, such as the reliability or the failure rate

functions, are important also.

%. An introduction to MRL (this and other notations are defined in Section 2)

and its many applications are surveyed in Guess and Proschan [41. See also

Bhattacharjee [2] and Gupta (6]. Kuo (91 presented a review in his Appendix 1

on burn-in and MRL. Park [10] commented, "... the time at which a bathtub

failure-rate is a minimum does not maximize the mean residual life. Contrary to
0

popular belief, the mean residual life in the constant failure-rate region of a

bathtub failure-rate curve is not constant." Of course, this and other MRL

facts have important consequences for developing better burn-in policies.

Discrete data arises naturally in various situations: from discretizing

or grouping of continuous data, devices operate by "cycles," etc. For example,

a copier and its key components have as their "cycle" producing a copy. The

4 lifelength would be the total number of copies.

Recently, Ebrahimi [31 has proposed models for discrete DMRL and IMRL. He

also referenced earlier work on other types of discrete failure models for life

testing data.

Monotone aging models are very useful and important in reliability

applications. E.g., a Weibull with a shape parameter greater than 1 is a DMRL

(also an IFR) model - adverse aging. A Weibull with a shape parameter less than

1 (and greater than 0, of course) is an IMRL (also a DFR) model - beneficial

• - . . .. .-.- -.- / -- • - - - •. , - ,- 9 . - . -. ." *I - W , %
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aging. Recall IFR implies DMRL, while DFR implies IMRL. On the other hand,

models with more than one stage of aging are also important and useful inNI reliability practice. E.g., the empirically observed bathtub failure rate model

has aging stages of infant mortality, useful life, and wearout. See Barlow &

Proschan [1, pp.55-56] for an example on a commercial airline engine's hot gas

generating subsystem. We use the same convention as Barlow & Proschan [1, p.6]

and others of using "increasing" for "nondecreasing" (constant is allowed) and

"decreasing" for "nonincreasing."

.. .. Note that bathtub failure rate models are in the nonparametric class of

DIFR. The related class to DIFR is IDMRL. The lognormal, used for repair

times as well as lifetimes, is in the IDFR class. The analog to IDFR is DIMRL.

See Guess, Hollander & Proschan [51 for details on the IDMRL and DIMRL classes.

An upside down bathtub MRL is in the IDMRL class (human lifelength can be

*modeled well by this class). A bathtub MRL is in the DIMRL class (repair time

models are included).

In this paper, we consider discrete versions of IDMRL and DIMRL. A

general approach to creating parametric and nonparametric models in these

classes is presented. Illustrative parametric examples are given. This example

includes as a special case one of Ebrahimi's [31 model by allowing n0 = 0.

Because the approach allows parametric modeling, maximum likelihood

estimation of the models can be done. This estimation would be possible, not

only for complete discrete life data, but even for right censored discrete data.

Cf. Hall & Wellner [7].0.
A simple, perhaps surprising, example is presented of IDMRL but not DIFR.

- In fact, the failure rate and the MRL both increase over the set n=0,1,..., n0-1

0.0
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of cycles. At the turning point, no, from IMRL to DMRL the failure rate drops

suddenly and increases again. See Figures 1 and 2. We discuss two possible

industrial explanations of such unusual behavior. Another simple, interesting

example shows that even if a distribution is DIFR and IDMRL the turning points

in each can differ. See Section 3.

. b.2. NOTATION &NOMENCLATURE

Notation

T time to failure of a system (or component)

f. Pmf[ti} = Pr[T=t i}

R. Sf{ti = Pr[T>ti}

R(x) Sf{x) - Pr{T>x)
X. discrete failure rate; fi/R

X.!I complement of the discrete failure rate; Xi  I-X.

* mi  mean residual life; E(T-tiT>ti]

MRL mean residual life

DMRL decreasing MRL

II'RL increasing MRL

IDMRL increasing initially then decreasing MRL

DIMRL decreasing initially then increasing MRL

IFR increasing failure rate

DFR decreasing failure rate

DIFR decreasing initially then increasing failure rate
IDFR increasing initially then decreasing failure rate

Nomenclature

IDMRL: A life distribution is called IDMRL at no if mi<mi+ for

0.

K.V
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i=0,1,..., n0-1 and mi > mi+1 for in 0, n 0+l,... Note that the MRL is

maximized at time no, the "turning point."

DIRML: A life distribution is called DIMRL at n0 if M m. 1 for

i=0,1,...,n0-1 and m. < m.+1 for i=n0 n0+l,..... Note that the MRL is minimized

at time n0  the "turning point."

3. A GENERAL APPROACH FOR CREATING IDMRL AND DIMRL MODELS

Consider again the definition of the MRL function

mi = E[T-t. IT>ti]. (2.1)

This can be rewritten as
44o

mi = f R(x)dx/Ri  (2.2)

Cf., for example, Kotz & Shanbhag [8]. When continuous data is grouped or when

it is only possible to observe failure that occurred in some interval, the t Is

could have a fractional part and/or be spaced unevenly. (E.g., during night

shifts and weekends, the inspection times for failure of a device can be less

frequent and sometimes uneven.) Allowing for this and assuming the ti's are

ordered (to < tI < ... ), we can express (2.2) as

t +- / tj+l

* -' mi r f R(x)dx /R'

S j-i t• jri( tj+l - tji) R(tj+ I ) / Ri

_j i (tj 1 - tj)Rj +i /Ri  (2.3)

S0. Recall in the above that R(x) is left continuous, not right continuous.

To allow for fractional values and uneven spacings, a person would want to

.

% %
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use (2.3). On the other hand, for the case t1+ c )
%1

(e.g., copiers) with cycles, (2.3) has the simple form of

mi  E * Rj+ /R. (2.4)"" j i j+

simple quick check of (2.4) is to take T degenerate 0. (Note that Ro=l, R.=0

for il; thus, mo=RI/R 0 + 0 + 0 +... = 0. m = 0 for i>1 by convention).

Because we have been motivated primarily by devices with cycles and

previous authors have focused on the case of t. = j for j = 0,1,2,..., we

consider (2.4) for the rest of this paper. We also assume m > 0 for

i=0,1,2,... in all of the following.

The main tool in our method for producing IDMRL and DIRML models is the

0 following theorem. See the Appendix for its proof.

Theorem 1. A life distribution is IDMRL at no if and only if there exist

a sequence {a n1 an > 0 for all n such that:

an _ an+ 1 for n=0,1,...,no-1 (2.5)

an _an+ 1 for n=no,no,+l,...)

and 51 an/(1+a n+1 ) for n=0,1,2,... (2.6)n n' "rn= ,l 2

A similar result for a DIMRL at n0 distribution is obtained by reversing

the inequalities in (2.5). See the end of the Appendix for further comments.

The proof in the Appendix demonstrates the helpful insight that a - m

0 This makes building models even easier. In creating an IDMRL at n0 model we
simply need to generate a sequence with a > 0 satisfying (2.5) and (2.6). Note

n

. that condition (2.5) is not difficult to meet. In the case of checking whether

a known distribution is IDMRL at no , then (2.6) is also straightforward.

Condition (2.6) may seem rather awkward, however, to verify in the situaton of

IIf



creating a new distributional model. Instead of verifying (2.6) directly, it

suffices to determine that

n=O an

an+1 - an > -1 , n=O,l,...

and, of course, an > 0 for all n. When a sequence is increasing after some

point, the above inequality is always met, while the equality may or may not

hold. When a sequence decreases anywhere, the inequality implies the decrease

can not be too quickly. When a sequence is decreasing after some time, theI! equality will always hold. (Aside: it turns out these alternative conditions

are necessary ones and can not be dropped. They will always be implicit in

0. other conditions. Cf. Bhattacherjee [2] and Hall & Wellner [7].)

"" Although the increase (decrease) of the MRL might suggest the decrease

*[ (increase) of the hazard rate of the life distribution, the following example

shows that the turning point for IDMRL does not necessarily agree with the

turning point from decreasing hazard rate to increasing hazard rate. Compare

also Example 2.

Example 1. Let a =1, a= 3/2, a= 4/3, a= 1 and an =1/3 for n > 4.
0 a1  a2  a3  n

Then it is easy to verify that the turning point from DFR to IFR occurs at n=3.

However, according to Theorem 1, the turning point for IDMRL occurs at n0=l.

*i Ebrahimi [3] considered the following illustrative discrete DMRL model

with

an c/(on+l), n=0,l,2,..., (0 c<l, 0>0). (2.7)

Itca b son irctytht 1fr =01, .. fr odl(27) Nt
" It an be hown drectlythat n  mn < 1frn012 o oe 27.Nt

that mn < 1 is a severe restriction, of course. A very slight, natural

nrWe

I
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modification of the model, however, is possible. Let T be a random variable

with distribution formed from the (an} of (2.7). The sequence {a n that

generates the distribution of T = ET for 0>0 is

a= 2c/(an+E), n=0,1,2,..., (0<c<l, 00,8>0). (2.8)

Note that E(T ) = e.E(T) and that for )=1 (2.8) reduces to (2.7). Also recall

mn = an.

To get a simple discrete IDMRL model, we let

an = E2c/(In-ni + e)

for n=0,1,2,..., (0<c<l, c>0, e>0,n0 0). An easy check of Theorem 1 shows the

above valid. This model includes both (2.7) and (2.8) as special cases. (The

case n =0 is allowed.)

It is possible to simplify this IDMRL an by letting c = 1; thus,

a = / (a I n-n0 l + 0).

Note that lima. = 0 is a natural condition on the MRL. Recall the failure

rate of the Gamma life distribution, however, converges to a constant greater

than 0 as time t gets larger. I.e., asymptotically in time it behaves like an

exponential. If a situation suggests that lim a n  a > 0 is needed on the MRL,
.n-)

another possible modification is

an = /(an-n0 + 8) + y, n=0,1,2,... , (2.9)

with the new parameter y > 0. If a reliability analyst wanted the essential

flexibility of (2.9), yet a simplified version then just set a = 1.

Example 2. Let a = 1, n0 = 40, 0 - 62.711168, and y = 61.711168 in (2.9). To

get a mean (m0 ) of 100, we used this 0) and y. The MRL function, mi, is graphed

in Figure 1. Note that the graph is as expected IDMRL at n =40. Figure 2

00

in ~ ~~~~ i. Noetahei O
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shows the graph of the failure rate function. Note that it is not, however,

DIFR. In fact, both the failure rate and the MRL strictly increase for n=0,

1..., 39=n 0-1. (Recall IFR everywhere implies DMRL everywhere.) At the

turning point (nO = 40) from IMRL to DmRL the failure rate drops suddenly to its

minimum and then increases again. "

One possible explanation for the unusual behavior is that at the turning

point an overhaul is performed with new, state of the art parts. The higher
° .

initial IFR is replaced by a lower IFR immediately upon completion of the

overhaul. The closer in time the device can get to the overhaul time and the

significantly lower failure rate, the larger the MRL grows. This explains the

initial IMRL part, even though the failure rate is increasing. In the tail

(n>n0 = 40) we have IFR, thus DMRL.

Another explanation is to consider a stress screening program of parts or

devices with IFR. In the initial time period the stressful screen results in a

much higher than normal IFR. This is followed upon completion by a sudden drop

to a significantly lower IFR. The closer we get to the time of exiting the

screen, the higher the IRL gets, i.e., we have IMRL initially. After exiting to

the lower IFR we have DMRL.

Figures 1 and 2 also show the importance of graphing both the MRL and the

failure rate to understand data better. It will not necessarily be obvious

looking at one graph what the other does.

4. CONCLUS IONS

For cost analysis, burn-in, and/or modeling discrete life data, the MRL is

a useful tool. We have provided a general approach for creating IDMRL (e.g.,

useful for lifetimes) and DIMRL (e.g., useful for repair times) models.
.

.%
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Given a parametric version of one of these models, it is possible using

(2.6) to derive the likelihood for the data. See Ebrahimi (3] and his

-S references. Cf. Hall and Wellner (7]. With the likelihood it becomes possible

to do maximum likelihood estimation on complete discrete life data and even on

right (and/or left) censored data.

An advantage to parametrizing directly the MRL as presented in this paper

is that even given the failure rate or the probability mass function,

calculation of the MRL could require doing an infinite summation numerically.

Cf. (2.4) and (A.1).

It should be noted again that minimizing the failure rate does not

guarantee maximizing the MRL. Which measure of reliability does a person need

failure rate is best, for many others maximizing the MRL would be preferable

because of reducing the average cost, for instance. (Cf. Kuo [91 and Guess and

Proschan (4]). Our approach to constructing discrete IDMRL models contributes

there also.

We presented illustrative examples and models to demostrate key advantages

of thinking directly in terms of discrete MRL models. The graphs in Figures 1

and 2 showed that merely graphing the failure rate (MRL) alone will not

necessarily suggest the actual behavior of the MRL (failure rate). Both are

0 ?needed.

APPENDIX

This appendix provides the proof of Theorem 1. Salvia and Bollinger [i)

gave representation results which we use below to obtain

fo = O 1 - a0/(+aI)

%%

a.
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00

w ,i-i i-i

i- R. n X. nIX la/la ]I [a./(l+a )
j=0 j + j=0 j+l

for i = 1,2,...

. .. and

1.. j=0 ]  j=0 J -~

'[t for i=1,2,...

where {a } is a sequence defined in Theorem I.

-. To prove Theorem 1, we need the following lemma from Ebrahimi [3].

0 Lemma 1. Let (a ) and {b I be two converging positive sequences and let c > 0.
n n

If an/(c~an+l) a bn/(c+bn+l) for all n, then an - bn for all n.

Proof. The proof of the lemma involves essentially case I: a - b 0 and case

II: a s b = 0, where lima n  a and limb n s b.
n-x n-xo

Proof of Theorem 1. First assume that the life distribution is IDMRL at n

Recall we have assumed mn > 0 for all n. Note that

mn Z Rj+ /Rn = Ri/R n
j=n i=n+l

= H , (R./R.)
* i=n+l j=n +

r H X. (A.1)
i-n+l j-n ]

cc i-i
O.,n -m +x E n I.n n n

i=n+2 j=n+1 3

"4n (I+ mn+l) holds for any MRL,mn

0.,
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Thus, we express

Xn = mn/(l + mn+l) (A.2)

By definition of IDMRL at no the sequence {a defined by an m satisfies-0 n n

(2.5). From (A.2), a nI also fulfills (2.6). Note-,that a = mn > 0 for all n.

This completes the first implication of Theorem 1.

To prove the implication in the other direction, we assume the existence

of a sequence {an I satisfying (2.5), (2.6) and an > 0 for all n. By an

decreasing for n > n0 and an > 0, lim a = a > 0 exists.

Now consider

i-i

mn R A 3 (A.3)
i=n+l j=n 3

i-l+n

i=1 j=n 3

which follows directly from the representation of Xj in (2.6), the definition

-i of in, (A.1), and readjusting the summation index. Note that

-im X lim an/(l+a n+) = a/(l+a). (A.4)
n- " n-nl

.0-"By (A.4) and the ratio test, m n converges, and hence, is well defined. Consider

next

lim mn/(l+mnl) = lim [Nn(l+m )]/(l+m
n n n+l - n n+l n+l(A5

v%..n- n- =
<" (A. 5)

4-. " lim Yn = a/(l+a) I
Using limiting operations, we have

I 0 

,

I % * * * ,- .4~ 4 *~ . .
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i-l+n
limm Mr z ~ lim
n-xo n i=l n->- j=n ]

" "- lim Xn (,a

i=l i 1

By Xn = an/(l+an+l) = mn/(l+mn+1 ) and the results above, we apply Lemma 1 to see

an = mn for all n. By property (2.5) of (anl, the sequence (inI satisfies the

condition for IDMRL at no, which we wanted to show.

For the DIMRL at n0 version of Theorem 1 the proof assuming first DIMRL

(n0 ) follows similarly. To show the implication in the other direction,

* however, requires the additional condition that the sequence [anI is bounded for

these proof techniques. Watson & Wells [12] considered lognormal's unbounded

MRL. We allow for unbounded (an I and MEL by our comments and conditions on page

7. Cf. also Bhattacharjee [2] and Hall & Wellner [7].
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Captions

Figure 1: Mean residual life function

Figure 2: Failure rate function
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